SAMPLE TEST
MATHEMATICS

2009 Oregon Content Standards
High School
It is the policy of the State Board of Education and a priority of the Oregon Department of Education that there will be no discrimination or harassment on the grounds of race, color, sex, marital status, religion, national origin, age or handicap in any educational programs, activities, or employment. Persons having questions about equal opportunity and nondiscrimination should contact the State Superintendent of Public Instruction at the Oregon Department of Education.

Office of Assessment & Information Services
Oregon Department of Education
255 Capitol Street NE
Salem, OR 97310
(503) 947-5600

Susan Castillo
State Superintendent of Public Instruction

Leslie Phillips
Science and Social Sciences Assessment Specialist

Doug Kosty
Assistant Superintendent

James Leigh
Mathematics Assessment Specialist

Tony Alpert
Director, Assessment and Evaluation

Dianna Carrizales
Director, Monitoring, Systems, and Outcomes

Steve Slater
Manager, Scoring, Psychometrics and Validity

Bradley J. Lenhardt
Monitoring and Assessment Specialist

Kathleen Vanderwall
Manager, Test Design and Administration

Sheila Somerville
Electronic Publishing Specialist

Holly Carter
Assessment Operations and Policy Analyst

Kathy Busby
Project Manager

Ken Hermens
Language Arts Assessment Specialist
INTRODUCTION TO
MATHEMATICS KNOWLEDGE AND SKILLS
GRADE-LEVEL SAMPLE TESTS

BACKGROUND
The Oregon Department of Education provides sample tests to demonstrate the content and types of questions students in grades 3, 4, 5, 6, 7, 8, and High School might encounter on the Oregon Assessment of Knowledge and Skills (multiple-choice), which is administered each year.

ELIGIBLE CONTENT
These sample questions were taken from tests given in previous years. They were originally written to align to the 2002 Oregon Mathematics Grade-level Content Standards. A panel of content experts studied the items and selected the ones which best align to the 2007/2009 Mathematics Content Standards for grades 3-8 and high school. New for 2010-11, scores are reported out at three Score Reporting Categories each year. The titles of these SRCs changes from year to year, but describes the content for each year in general terms. The chart shows the SRCs for all grade levels.

<table>
<thead>
<tr>
<th>Score Reporting Category 1</th>
<th>Score Reporting Category 2</th>
<th>Score Reporting Category 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3.1 : Number and Operations</td>
<td>3.2 : Number and Operations, Algebra, and Data Analysis</td>
<td>3.3 : Geometry and Measurement</td>
</tr>
<tr>
<td>4 4.1 : Number and Operations</td>
<td>4.2 : Number and Operations and Algebra</td>
<td>4.3 : Measurement</td>
</tr>
<tr>
<td>5 5.1 : Number and Operations and Data Analysis</td>
<td>5.2 : Number and Operations and Algebra</td>
<td>5.3 : Geometry, Measurement, and Algebra</td>
</tr>
<tr>
<td>6 6.1 : Number and Operations</td>
<td>6.2 : Number and Operations and Probability</td>
<td>6.3 : Algebra</td>
</tr>
<tr>
<td>7 7.1 : Number and Operations and Algebra</td>
<td>7.2 : Number and Operations, Algebra and Geometry</td>
<td>7.3 : Measurement and Geometry</td>
</tr>
<tr>
<td>8 8.1 : Algebra</td>
<td>8.2 : Data Analysis and Algebra</td>
<td>8.3 : Geometry and Measurement</td>
</tr>
<tr>
<td>HS H.A : Algebra and Numeracy</td>
<td>H.G : Geometry</td>
<td>H.S : Data Analysis</td>
</tr>
</tbody>
</table>

As in the operational assessment, students are strongly encouraged to use the calculator with which they are most familiar when taking the sample test.

The answer key provided at the end of the sample test booklet identifies which of these categories each question is designed to assess. Because the item calibrations (RIT) are not accurate for the new standards, we are not able to provide a Raw-to-RIT chart as we had in the past.
The same weighting across the three Score Reporting Categories of mathematics content is used in both sample and operational tests, as much as possible. This chart shows the approximate percent weighting of SRCs by grade level:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Reporting Category 1</th>
<th>Weight</th>
<th>Score Reporting Category 2</th>
<th>Weight</th>
<th>Score Reporting Category 3</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Number and Operations</td>
<td>35%</td>
<td>Number and Operations, Algebra, and Data Analysis</td>
<td>35%</td>
<td>Geometry and Measurement</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>Number and Operations</td>
<td>35%</td>
<td>Number and Operations and Algebra</td>
<td>35%</td>
<td>Measurement</td>
<td>30%</td>
</tr>
<tr>
<td>5</td>
<td>Number and Operations and Data Analysis</td>
<td>35%</td>
<td>Number and Operations and Algebra</td>
<td>35%</td>
<td>Geometry, Algebra, and Measurement</td>
<td>30%</td>
</tr>
<tr>
<td>6</td>
<td>Number and Operations</td>
<td>35%</td>
<td>Number and Operations and Probability</td>
<td>35%</td>
<td>Algebra</td>
<td>30%</td>
</tr>
<tr>
<td>7</td>
<td>Number and Operations and Algebra</td>
<td>35%</td>
<td>Number and Operations, Algebra and Geometry</td>
<td>35%</td>
<td>Measurement and Geometry</td>
<td>30%</td>
</tr>
<tr>
<td>8</td>
<td>Algebra</td>
<td>40%</td>
<td>Data Analysis and Algebra</td>
<td>30%</td>
<td>Geometry and Measurement</td>
<td>30%</td>
</tr>
<tr>
<td>HS</td>
<td>Algebra</td>
<td>50%</td>
<td>Geometry</td>
<td>30%</td>
<td>Statistics</td>
<td>20%</td>
</tr>
</tbody>
</table>

WHY PROVIDE STUDENTS WITH A SAMPLE TEST?
Most students feel some anxiety as they approach a test. It is important that students know what to expect when they take the OAKS tests. The sample tests are intended to help students approach the state tests with confidence – comfortable with the test format and familiar with test-taking strategies to help them achieve the best possible score.

CONTENTS OF THE SAMPLE TEST:
This overview of the purpose for sample tests is followed by a list of test-taking tips. The sample test formatting is similar to that of the operational OAKD Online mathematics test. A “fill-in-the-bubble” answer sheet for the students to use follows the actual sample test. The answer key identifies the correct answer, the score reporting category represented, and the code of the content standard to which the item aligns. The sample test has fewer items than the actual assessment, and may not be used in place of the operational assessment.
USING THE SAMPLE TEST:

Teachers often have their students take the test as a “practice” activity in preparation for the actual Statewide Assessment. The answer key could be removed prior to making copies of the sample test for student practice. Copies of the answer key could then be provided to students to check their work or to take home and share with parents.

It is important to remember that students are encouraged to use their calculators and any mathematics manipulatives on the test. Providing these tools in class and encouraging students to use them during the sample test may be very beneficial in encouraging students to take their time and use the appropriate tools to help them solve problems during the actual test administration. In fact, teachers may want to demonstrate how various tools could be used to solve the multiple-choice problems as part of the practice test activities.

Teachers may use the overall class results to target areas of instruction needing further attention.

Parents may find the sample test helpful in clarifying the types of questions their child will encounter on the multiple-choice test. Parents could also assist their child in preparing for the test by practicing at home. The list of test-taking tips gives parents suggestions on ways to reduce test anxiety and promote good study and health habits in preparation for testing.

Students may wish to use the test independently to practice before the actual test administration, checking their own responses against the answer key provided at the end of the booklet. Students may benefit from re-reading the problems and analyzing both the correct and incorrect answers to the multiple-choice questions they missed.

Building principals, superintendents, district testing coordinators, curriculum leaders and others may find the sample test useful in communicating with parents, school site councils, and other community members. Parts of the sample test could be included in a newsletter or shared at meetings of local community groups to help constituents better understand the state assessment system. Although the sample tests are not as comprehensive as the complete tests administered in the Statewide Assessment, they do provide a sampling of the subject area content and difficulty levels students may encounter as a part of Oregon’s high academic standards.

Assessment Conditions
If the practice test is to be administered in “test-like” conditions, the following steps need to be followed:
- post a “testing, do not disturb” sign on the window or door of the classroom
- go over any directions (e.g., students are to complete the entire test or only a portion of the test at one sitting)
- expect the students to work by themselves with no talking during the assessment
- monitor student activities during the assessment
- provide any of the appropriate accommodations or modifications students use during instruction and might need during testing
- expect all students to participate
TEST-TAKING TIPS

BEFORE THE TEST
- Develop a positive attitude. Tell yourself, “I will do my best on this test.”
- Get a good night’s sleep the night before the test.
- Get up early enough to avoid hurrying to get ready for school.
- Eat a good breakfast (and lunch, if your test is in the afternoon).

DURING THE TEST
- Stay calm.
- Listen carefully to directions.
- Read each test question and all the answer choices carefully.
- Eliminate any obvious wrong answers.
- Solve the problem using paper and pencil, a calculator or by using manipulatives. See if your answer is similar to one of the choices given.
- Pace yourself. If you come to a difficult question, it may be better to skip it and go on. Then come back and focus on the difficult questions one at a time.
- Just like the Statewide Assessment, this is not a timed test. If you need more time to finish the test, notify your teacher.
- Remember the test questions are not necessarily arranged by difficulty. If you get to a question you think is too hard, that doesn’t mean the rest of the test questions will also be too hard.
- The teachers who write the test questions use “commonly made mistakes” to identify good distractors, so finding an answer like yours is not a guarantee that it is the correct answer.
- If you are not sure of an answer to a question, try these tips:
 ◊ Cross out the answers you know are not correct and choose among the rest.
 ◊ Read through all the answers very carefully, and then go back to the question. Sometimes you can pick up clues just by thinking about the different answers you have to choose from.
 ◊ If you get stuck on a question, skip it and come back later.
 ◊ It is OK to guess on this test. Try to make your best guess, but make sure you answer all questions.

AFTER THE TEST
- Before you turn your test in, check it over. Change an answer only if you have a good reason. Generally it is better to stick with your first choice.
- Make sure you have marked an answer for every question, even if you had to guess.

ADDITIONAL INFORMATION on mathematics assessment may be obtained by contacting James Leigh, Mathematics Assessment Specialist, email to: James.Leigh@state.or.us
<table>
<thead>
<tr>
<th>MEASUREMENTS</th>
<th>AREA (A)</th>
<th>SURFACE AREA (SA) and VOLUME (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 meter = 100 centimeters</td>
<td>$A = l \times w$</td>
<td>$SA = 2(lw + wh + lh)$</td>
</tr>
<tr>
<td>1 kilometer = 1000 meters</td>
<td>$A = bh$</td>
<td>$V = \frac{1}{3} Bh$</td>
</tr>
<tr>
<td>1 yard = 3 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mile = 5280 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 hour = 60 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 minute = 60 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 gram = 1000 milligrams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 liter = 1000 cubic centimeters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pound = 16 ounces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cup = 8 fluid ounces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pint = 2 cups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 quart = 2 pints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ton = 2000 pounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 gallon = 4 quarts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 meter = 100 centimeters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 kilometer = 1000 meters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 yard = 3 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mile = 5280 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 hour = 60 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 minute = 60 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 gram = 1000 milligrams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 liter = 1000 cubic centimeters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pound = 16 ounces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cup = 8 fluid ounces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pint = 2 cups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 quart = 2 pints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ton = 2000 pounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 gallon = 4 quarts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surface Area and Volume Formulas

- **Cylinder**
 - Surface Area: $SA = 2\pi rh + 2\pi r^2$
 - Volume: $V = \pi r^2h = Bh$
- **Cone**
 - Surface Area: $SA = \pi r\sqrt{r^2 + h^2} + \pi r^2$
 - Volume: $V = \frac{1}{3}\pi r^2h = \frac{1}{3} Bh$
- **Sphere**
 - Surface Area: $SA = 4\pi r^2$
 - Volume: $V = \frac{4}{3}\pi r^3$

Midpoint and Slope Formulas

- **Midpoint**
 - Between two points (x_1, y_1) and (x_2, y_2):
 $$\text{Midpoint} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

- **Slope**
 - Between two points (x_1, y_1) and (x_2, y_2):
 $$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Trigonometric Formulas

- **Sine**
 - $\sin A = \frac{a}{c}$

- **Cosine**
 - $\cos A = \frac{b}{c}$

- **Tangent**
 - $\tan A = \frac{a}{b}$
1. Which number has the greatest value?
 A. \(\frac{3}{5} \)
 B. \(4.2 \times 10^2 \)
 C. 3100
 D. 200²

2. From the scatter plot you can conclude the following for the group of students that studied only the night before the final exam.

 ![Final Exam versus Study Time](chart)

 A. More time studying, the better the grade.
 B. Less time studying, the better the grade.
 C. Less time studying, the lower the grade.
 D. Time studying did not relate to the grade.

3. There are 6 snakes in a certain valley. The population of snakes doubles every year. In how many years will there be 96 snakes?
 A. 2
 B. 3
 C. 4
 D. 8

4. Simplify:
 \[-13x + (−7x) + 5x\]
 A. \(-25x\)
 B. \(-15x\)
 C. \(15x\)
 D. \(25x\)
5. Quadrilateral ABCD is similar to quadrilateral EFGH. Find the length of side AB.

A. 1
B. 2
C. 3
D. 6

6. Which of the following line segments is tangent to the circle?

A. \overline{AB}
B. \overline{CD}
C. \overline{DE}
D. \overline{OE}

7. A basketball team has 10 players. Five of the players are guards, three are forwards, and two are centers. If the coach must choose two guards, two forwards, and one center to start the game, how many possible combinations are there?

A. 60
B. 252
C. 1440
D. 30,240
8. If the spinner shown is spun, what is the probability it would NOT land on 3?

A. \(\frac{1}{6} \)
B. \(\frac{1}{3} \)
C. \(\frac{5}{6} \)
D. \(\frac{7}{8} \)

9. Which number has the greatest value?

A. \(\left(\frac{1}{2} \right)^4 \)
B. \(\sqrt{5} \)
C. \(\frac{7}{3} \)
D. 2.324
10. Find the solution to the following system of two linear equations:

\[y = 9x - 3 \]
\[4x + 2y = 5 \]

A. \(\left(\frac{4}{11}, \frac{3}{11} \right) \)
B. \(\left(\frac{1}{2}, \frac{3}{2} \right) \)
C. \(\left(\frac{8}{13}, \frac{7}{13} \right) \)
D. \(\left(\frac{11}{13}, \frac{7}{13} \right) \)

11. A ball is tossed into the air. The height of the ball as a function of time can be described by the equation \(h = -16t^2 + 72t \). In this equation \(h \) is the height of the ball in feet and \(t \) is time in seconds.

After how many seconds will the ball hit the ground?

A. 4 seconds
B. 4.5 seconds
C. 9 seconds
D. 56 seconds

12. The coordinates of point A are (-5, 3).

If A is reflected over the y-axis, then translated 3 units right and 4 units down, the new coordinates of A are:

A. (5, 3)
B. (8, -1)
C. (-2, -1)
D. (-2, -7)
13. Jamie’s Ice Cream Store is making chocolate covered cones to sell for Easter. About how much chocolate will be required to cover the outside of each cone?

![Diagram of a cone with dimensions: 6 inches on the slant, 8 inches as the diameter at the base.]

A. 37.7 square inches
B. 75.4 square inches
C. 150.7 square inches
D. 226.1 square inches

14. Express 3.02×10^{-1} as a percent.

A. 0.302%
B. 3.02%
C. 30.2%
D. 302%

15. You can receive a reduced ticket price at the local movie theater if you are 65 or older, or if you are younger than 12. Which graph displays this information?

![Graphs with different age ranges marked.]

A.
B.
C.
D.

Office of Assessment and Information Services
Oregon Department of Education
2010-2013 Sample Tests
January 2011
16. Quadrilateral ABCD, with diagonal \(\overline{BD} \), has \(\overline{AB} \cong \overline{CD} \).
Which statement would make \(\triangle BAD \cong \triangle DCB \)?

A. \(\angle C \cong \angle A \)
B. \(AB \parallel CD \)
C. \(AD \parallel CB \)
D. \(AB \perp BC \)

17. The library on campus is shaped like a regular polygon. Gayle finds the measurement of one of the interior angles of the library to be 165.6°. Using the measurement of the angle, Gayle determines the library has ___ sides.

A. 13
B. 15
C. 25
D. 38

18. Which of these number lines best represents the value of \(\left(\frac{1}{40} \right)^5 \)?

A.
B.
C.
D.

Office of Assessment and Information Services
Oregon Department of Education
2010-2013 Sample Tests
January 2011
19. If you spin the spinner two times, what is the probability it will land on A both times?

A. \(\frac{1}{4} \)
B. \(\frac{3}{8} \)
C. \(\frac{6}{8} \)
D. \(\frac{9}{64} \)

20. Every year the population of Springfield decreases by a factor of \(\frac{1}{6} \).

If the population of Springfield on Jan. 1, 1980 was 3,521, what was the approximate population on Jan. 1, 2000?

A. 92
B. 111
C. 132
D. 587
Oregon Mathematics Sample Test

Use number 2 pencil.
Do NOT use ink or ball point pen.
Make heavy dark marks that completely fill the circle.
Erase completely any marks you wish to change.

Name of Student

Name of Teacher

Name of School

1 A B C D
2 A B C D
3 A B C D
4 A B C D
5 A B C D
6 A B C D
7 A B C D
8 A B C D
9 A B C D
10 A B C D
11 A B C D
12 A B C D
13 A B C D
14 A B C D
15 A B C D
16 A B C D
17 A B C D
18 A B C D
19 A B C D
20 A B C D
We are not able to provide a Raw-to-RIT chart as we had in the past. Many of the items were initially calibrated under the old standards for different grades, and these items do not cover all of the new standards. Since the item calibrations (RIT) are not accurate for the new standards, any attempt to convert a raw score to a RIT score would not be valid.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Answer Key</th>
<th>Score Reporting Category</th>
<th>2009 HS Content Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>H.S : Data Analysis</td>
<td>H.1S.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.1</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.4</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>H.G : Geometry</td>
<td>H.1G.3</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>H.G : Geometry</td>
<td>H.1G.7</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>H.S : Data Analysis</td>
<td>H.2S.2</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>H.S : Data Analysis</td>
<td>H.2S.3</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.1</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.1</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.1</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
<td>H.G : Geometry</td>
<td>H.1G.1</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>H.G : Geometry</td>
<td>H.2G.2</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.2</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.1</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>H.G : Geometry</td>
<td>H.1G.2</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>H.G : Geometry</td>
<td>H.1G.5</td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.1</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>H.S : Data Analysis</td>
<td>H.2S.3</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>H.A : Algebra and Numeracy</td>
<td>H.1A.1</td>
</tr>
</tbody>
</table>